Mostrar mensagens com a etiqueta Resumos-Proteínas. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Resumos-Proteínas. Mostrar todas as mensagens

quinta-feira, 17 de agosto de 2017

Ubiquitina

A ubiquitina é uma proteína dos seres vivos eucariotas que possui 76 resíduos de aminoácidos e uma massa molecular de 8,5KDa, estando envolvida em diversos mecanismos celulares, tais como: regulação da progressão do ciclo celular, reparação do DNA, embriogénese, regulação da transcrição, indução da resposta inflamatória, apresentação do antigénio e apoptose. A sua primordial função está relacionada com a degradação de substratos proteicos marcados por poliubiquitinação mediada por um complexo proteico constituído por proteases, o proteossoma 26S. Neste complexo, as proteínas são separadas da ubiquitina e são degradadas por ataques nucleofílicos, dando origem a pequenos péptidos. A ativação da ubiquitina está diretamente relacionada com a enzima E1. O resíduo C-
-terminal da ubiquitina liga-se covalentemente a um resíduo de sulfidril-cisteína da enzima E1 ficando a molécula ativada. A ativação ocorre na presença de Mg2+ e com o consumo de 1 ATP, libertando AMP e pirofosfato. O processo de ativação está incluído numa sequência – ativação, conjugação e ligação. Inicialmente, a enzima E1 ativa a ubiquitina formando um grupo tioéster. Quando esta se encontra ativada, a enzima E2 realiza o transporte até ao substrato a ser utilizado e a enzima E3 (ligase) transfere a ubiquitina ativada. As enzimas envolvidas são codificadas por uma super família de genes, sendo que a enzima E1 é comum à maioria dos organismos eucariotas.
A monoubiquitinização, durante a endocitose, serve como sinal para regular a internalização das proteínas na membrana plasmática. Há também a ubiquitinação das histonas, que influencia modificações da cromatina. A poliubiquitinação marca as proteínas que devem ser degradadas no proteossoma. A regulação do ciclo celular é feita pelas cinases e a atividade destas depende das ciclinas (subunidades reguladoras) e de subunidades inibitórias e o sistema ubiquitina/proteassoma regula a degradação dessas mesmas subunidades: a SCF é responsável pela ubiquinação e proteólise das inibitórias enquanto que o complexo ACP degrada as ciclinas e promove a anafase.
A proteína p53 é uma proteína importante para o controlo do ciclo celular. Caso ocorram danos no DNA, esta proteína bloqueia a progressão do ciclo e ativa as proteínas que o reparam e, na situação de impossibilidade de reparação, ativa a apoptose celular. A p53 é degradada através do proteossoma, sofrendo poliubquitinação. No entanto, a sua degradação pode ser acelerada na presença da oncoproteína do vírus do papiloma humano (HPV), comprometendo sua função anti-cancerígena. Assim, a ubiquitinação das proteínas é importante na regulação de mecanismos celulares. Conclui-se que a ubiquitina está envolvida em muitos processos celulares, muitos ainda não esclarecidos ou totalmente identificados. Para além do seu envolvimento na degradação de proteínas ou na regulação, também é de notar o recrutamento desta proteína por proteínas virais nas suas estratégias de sobrevivência no que diz respeito a células infectadas. Têm sido identificadas várias doenças genéticas, as quais apresentam disfunções no mecanismo de ubiquitinação, nomeadamente, mutações na enzima E3.

Texto escrito por:
Ana Rita Oliveira
Celina Pereira
Luís Almeida
Margarida Antelo
Raquel Azevedo


.

terça-feira, 25 de julho de 2017

Termogenina

A termogenina (UCP1) foi a primeira proteína desacopladora a ser descoberta, no ano 1978. É uma proteína transmembranar presente na membrana interna das mitocôndrias.                    
Os desacopladores são substâncias que provocam a separação funcional entre a oxidação do NADH ou FADH2 e a fosforilação do ADP a ATP. No que concerne à sua função, é de salientar que as proteínas desacopladoras, neste caso a termogenina, fornecem uma via alternativa para os protões (H+) passarem do espaço intermembranar da mitocôndria para a matriz mitocondrial sem se relacionarem com a enzima ATP sintase (complexo F0F1). A energia do gradiente eletroquímico gerado não é direcionada para a síntese de ATP, mas sim para a produção de calor. Existem várias vias metabólicas que utilizam vários substratos (glucose e ácidos gordos) para reduzir transportadores de protões como o NAD+ e o FAD+, que após receberem estes protões, passam a ser denominados de NADH E FADH2, respetivamente. São exemplos destas vias a glicólise, ciclo de Krebs, e oxidação de ácidos gordos. Seguidamente, estes transportadores de protões serão o substrato da cadeia respiratória, onde através da sua oxidação há a produção de energia química sobre a forma de ATP (Adenosina Trifosfato). Este processo ocorre na matriz mitocondrial e consiste na transferência de protões ao longo de uma cadeia de transportadores que é constituída por 4 complexos. Estes protões atravessam a membrana interna de acordo com o gradiente de concentração através de proteínas transmembranares, passando para o espaço intermembranar; de seguida os protões vão retornar à matriz mitocondrial com o recurso a ATP-sintases que utilizam a energia deste transporte para sintetizar ATP a partir de ADP e Pi. O aceitador final dos protões depende de organismo para organismo, sendo que no caso dos seres aeróbios é o O2.                                                            
O tecido adiposo é classificado em dois tipos que apresentam distribuição, fisiologia, estrutura e patologia diferentes. Um deles é o tecido adiposo comum, amarelo ou unilocular (gordura branca), que quando as células estão completamente desenvolvidas, apresentam uma única gotícula de gordura que ocupa quase todo o citoplasma. O outro tipo é o tecido adiposo multilocular, também conhecido como gordura castanha, que apresenta adipócitos com numerosas gotículas lipídicas e muitas mitocôndrias, que lhe conferem a cor castanha.                   
Nos seres humanos, a gordura castanha só apresenta quantidades significativas nos recém-nascidos, com função auxiliar na termorregulação. Ao ser estimulado pela libertação da noradrenalina nas terminações nervosas abundantes em torno das suas células, o tecido adiposo multilocular acelera a lipólise e a oxidação de ácidos gordos. O calor produzido vai aquecer o sangue contido nos capilares do tecido multilocular e é distribuído pelo corpo, aquecendo os diversos órgãos. A atividade desta proteína é também estimulada em muitos animais aquando da sua hibernação.                                      A produção de termogenina é frequentemente estimulada quando consumimos uma refeição hipercalórica, sendo uma forma de gastar energia em excesso de modo a manter o balanço energético (e assim o peso corporal).

Texto escrito por:
Ângela Barbosa
Carla Rocha
Diogo Dinis
Diogo Assis
Marco Ferreira 
.

sábado, 15 de julho de 2017

Queratina

A queratina é uma proteína secundária, com forma tridimensional de α-hélice (α-queratina) ou de folhas-β-pregueadas (β-queratina) e constituída por cerca de 21 aminoácidos ligados entre si através de pontes de hidrogénio. O principal aminoácido que compõe a queratina é a cisteína que, por ser um aminoácido sulfurado, ou seja, que apresenta o elemento enxofre na sua estrutura, estabelece entre si um tipo de ligação covalente denominada ligação cisteídica, que se dá entre dois átomos de enxofre (S-S).A queratina é sintetizada em células diferenciadas - queratinócitos - do tecido epitelial  (pele) e invaginações da epiderme para a derme  (como os cabelos e unhas) de animais terrestres. Devido à sua estrutura tridimensional, esta proteína possui propriedades particulares como microfilamentos com resistência (relacionada com as ligações cisteídicas da cadeia), elasticidade e impermeabilidade à água.
Esta proteína forma uma camada que envolve as células da epiderme (camada mais externa da pele), de modo a evitar perdas desnecessárias de água e, também, proteger o organismo contra agressões externas, tais como choques mecânicos, radiação solar, ventos e chuvas. As células queratinizadas mesmo estando mortas conseguem desempenhar tais funções, porque primeiro detêm microrganismos que auxiliam na retenção de água, depois porque formam uma camada protetora, que evita agressões às células vivas.
Nos mamíferos, além da epiderme, a queratina também é encontrada nas unhas, cabelos, cascos, chifres e garras. Nas aves, as penas e os bicos são estruturas queratinizadas. As escamas dos répteis, as “barbas de baleia”, a carapaça dos cágados, os espinhos do porco-espinho e as barbatanas dos peixes também são ricos em queratina.
Esta proteína é muito usada pela indústria de cosméticos, como na composição de champos, condicionadores, cremes, vernizes, restauradores capilares, cremes alisantes e produtos de higiene pessoal. É muito utilizada em tratamentos capilares, por ser a principal substância que compõe os cabelos, estes que estão destinados à reposição da proteína perdida diariamente por meio de agressões físicas e químicas. A queratina também é utilizada no alongamento de cabelos, que transforma os fios de cabelo com os seus polímeros, tornando os cabelos mais fracos mas mais longos.

Texto escrito por:
Beatriz Gonçalves
Bernardo Machado
Lindoro Salgado
Mafalda Cunha Gomes
.

sexta-feira, 7 de julho de 2017

Amilase salivar

A ptialina ou alfa-amilase salivar é uma enzima da saliva que apresenta um pH óptimo de aproximadamente 7,0 (neutro) e uma temperatura óptima de atuação entre 35ºC e 40ºC sendo que a mesma é inactivada a temperaturas inferiores a 35ºC e desnaturada quando ultrapassa os 40ºC. A ptialina é produzida pelas glândulas salivares, em especial pela glândula parótida. Esta enzima juntamente com sais minerais e muco formam a saliva. A presença de um alimento na cavidade bucal e estímulos psicológicos levam à secrecão de saliva contendo a enzima ptialina. A ptialina atua sobre o amido e glicogénio ingeridos, catalisando a hidrólise das ligações alfa-1,4, o que dá origem a pequenos dissacarídeos de maltose . Além disso, a sua exposição ao substrato ocorre de forma muito rápida (restrita ao tempo de mastigação) daí a importância de se mastigar vagarosamente, pois assim, o contacto da ptialina com o polissacarídeo é prolongado e a sua ação é potencializada. Em suma a principal função desta proteína é iniciar a digestão dos carbohidratos, facilitando a sua digestão nos intestinos, sendo que ao chegar ao estômago, onde o pH é muito ácido, a enzima torna-se inativa. 

A continuação da digestão dos carbohidratos irá dar-se no intestino delgado, mais propriamente no jejuno aonde outra amilase, a amilase pancreática, em conjunto com os sais biliares irá clivar as ligações das moléculas de maltose, formando duas moléculas de glicose as quais irão ser absorvidas pelo intestino.
Para além disso a amilase salivar tem um fator protector contra as cáries dentarias. Os resíduos de alimentos ricos em carbohidratos que permanecem nos dentes após a mastigação propiciam o crescimento de bactérias, que produzem ácidos capazes de corroer o esmalte dental, causando cáries. A ptialina sintetiza os polissacarídeos desses resíduos, evitando que tais bactérias cresçam e se multipliquem. É por isso que indivíduos que produzem um maior fluxo de saliva têm menor tendência a desenvolver cáries dentárias.


Texto escrito por:
Amadeu Barroco
Catarina Teixeira
Marly Gonçalves
Pedro Pinto
.

quarta-feira, 28 de junho de 2017

Fosfofrutocinase 1

A fosfofrutocinase 1, também conhecida como PFK-1, é a segunda enzima regulatória da glicólise e o seu principal ponto de regulação. É uma enzima alostérica pertencente à família das fosfotransferases que catalisa uma fosforilação: a conversão de frutose-6-fosfato e ATP em frutose-1,6-bisfosfato e ADP, um passo chave na regulação e limitação da taxa de glicólise, em resposta às necessidades energéticas da célula, através do processo de inibição alostérica.A regulação alostérica é a forma mais rápida de regulação específica de determinadas enzimas – as enzimas regulatórias. Requer a presença de moléculas, os moduladores alostéricos, que interatuam com as enzimas, conduzindo a alterações estruturais, tornando a enzima ou mais rápida (moduladores positivos) ou mais lenta (moduladores negativos).
A nível estrutural, apresenta-se como um homotetrâmero, ou seja, é constituída por 4 subunidades. A PFK-1 pode ser composta por três tipos de formas: M, L ou P, dependendo do tipo de tecido em que se encontra. Por exemplo, o músculo expressa apenas a isoenzima M. Já no fígado e rins predomina a isoforma L. Quanto aos eritrócitos expressam ambas as formas M e L.
Cada subunidade deste tetrâmero possui 319 aminoácidos e é composto por dois domínios: um que se liga ao ATP e o outro que se liga à frutose-6-fosfato.
O domínio N-terminal possui um papel de catalisador de ligação de ATP, enquanto que o terminal C apresenta um papel regulador.
A atividade da PFK-1 depende de um mecanismo em que ocorre transição de um estado T enzimaticamente inativo para um estado R ativo. Se, por um lado, a frutose-6-fosfato se liga, com elevada afinidade, ao estado R, já a mudança para o estado T inibe a sua capacidade de se ligar à enzima.
A atividade desta enzima é controlada por ativadores e inibidores. Por um lado, os ativadores podem ser indicadores de défice energético (ADP, AMP), já que a glicólise pretende compensar esse défice; ou o substrato da reação que catalisa (frutose-6-fosfato), entre outros ativadores. Por outro lado, como inibidores existem o ATP, visto que, se a célula já possuir ATP suficiente, faz todo o sentido que a glicólise seja inibida; o produto da reação (frutose-1,6-bisfosfato), assim como todos os intermediários gerados nas reações seguintes; os intermediários do ciclo de Krebs, se houver acumulação destes intermediários, não será necessário continuar o processo de glicólise; o glucagon, dado que, esta hormona é produzida em situações de hipoglicemia e tem como objetivo elevar a concentração de glucose no sangue, não fazendo sentido gastá-la; entre outros inibidores.
Os ativadores alostéricos ligam-se com o objectivo de facilitar a formação do estado R, induzindo alterações estruturais na enzima, já os inibidores ligam-se para facilitar a formação do estado T inibindo, assim, a atividade da enzima.



Texto escrito por:
Ana Maria Araújo
Ana Sofia Oliveira
Maria Sofia Silva
Renata Teixeira
.

segunda-feira, 19 de junho de 2017

Pepsina

A pepsina foi descoberta por Theodor Schwann em 1835 após ter sido extraída de uma glândula da parede estomacal. Após a descoberta desta enzima, Theodor demonstrou que uma vez misturado com ácido clorídrico (que já era reconhecido como um dos constituintes do suco gástrico) um extrato, preparado a partir de glândulas do tecido estomacal, exibia uma maior capacidade de “dissolver” carne do que o ácido clorídrico sozinho.
No que toca à sua estrutura, é uma proteína monomérica com elevada percentagem de resíduos ácidos. O peso molecular da pepsina é aproximadamente 34,5 kDa , enquanto o pepsinogénio (precursor da pepsina)  ronda os 41,4 kDa. Para a pepsina ser ativa, terá de ser adicionado um protão a um dos dois resíduos de aspartato no centro ativo, e retirado um protão ao outro (isto ocorre entre pH 1 e 5). NOTA: acima de pH 7 a pepsina é irreversivelmente desnaturada.A pepsina é a principal enzima proteolítica ativa secretada pelo suco gástrico, solução aquosa rica em ácido clorídrico e em enzimas que atuam na digestão de proteínas. Existem células especializadas na secreção de ácido clorídrico (células parietais), o que faz com que o ambiente gástrico seja extremamente ácido. Estas células produzem uma enzima gástrica inativada (pepsinogénio) que ao entrar em contato com o HCl transforma-se em pepsina (forma ativa). Este contacto com o HCl é crucial, visto que a pepsina só reage em meio acido.
O principal ativador da pepsina é o pepsinogénio, enquanto que os seus inibidores são álcoois alifáticos e a pepstatina A.
A pepsina tem a função de digerir proteínas, através da catalisação da hidrolise dessas moléculas quebrando as ligações peptídicas entre alguns aminoácidos, é específica para certos pontos da proteína, e, portanto, não ocorre uma digestão completa. Os produtos dessa quebra são cadeias de aminoácidos relativamente longas, como as peptonas, mas há aminoácidos que se libertam completamente como  a fenilalanina, o triptofano e a tirosina principalmente.
A deficiência de pepsina no organismo pode ser causada principalmente por problemas fisiológicos, como a acloridria , deficiência na secreção ácida no estômago, ou resultantes da utilização de certos medicamentos que inibem a secreção de ácido clorídrico no estômago, como os anti-ulcerativos e os antiácidos. Problemas fisiológicos deste tipo impossibilita a conversão do pepsinogénio em pepsina. Esta deficiência acarreta em uma má digestão proteica, facto que pode fazer aumento o tempo de digestão e causar acumulação de proteínas no intestino, causando fermentação (pelas bactérias presentes no intestino) e deficiência na absorção de aminoácidos pelo organismo.
CURIOSIDADES: A pepsina pode ser extraída do estômago de suínos e bovinos e utilizada pela indústria alimentícia na produção de coagulantes de leite e amaciadores de carne. O nome “Pepsi” (marca de refrigerantes) tem esse nome por ter pepsina na sua constituição e, inicialmente, era utilizada como um medicamento para curar a dispepsia.


Trabalho realizado por:
Brayan Freitas
Diogo Fernandes 
Mariana  Gonçalves
Miguel Pinto
.

sexta-feira, 17 de março de 2017

Mioglobina

A mioglobina é uma hemoproteína citoplasmática que consiste numa única cadeia polipeptídica de 154 aminoácidos. Expressa unicamente em miócitos cardíacos e fibras musculares esqueléticas oxidativas, a mioglobina foi assim chamada por causa da sua semelhança funcional e estrutural à hemoglobina. Como a hemoglobina, a mioglobina liga-se reversivelmente ao O2 e, assim, pode facilitar o transporte de O2 a partir de glóbulos vermelhos para as mitocôndrias durante períodos de aumento da atividade metabólica ou servir como um reservatório de O2 durante hipoxia ou anoxia.
A estrutura da mioglobina foi delineada pela primeira vez por John Kendrew há mais de 40 anos atrás e trabalhos subsequentes demonstraram que é uma cadeia de polipéptidos que consiste em oito α-hélices. Liga-se ao oxigénio pelo seu resíduo heme, um anel de porfirina: complexo do ião de ferro. A cadeia polipeptídica é dobrada e embala o grupo prostético heme, posicionando-o entre dois resíduos de histidina, His64 e His93. O ião de ferro interage com seis ligantes, quatro dos quais são fornecidos pelos átomos de nitrogénio dos quatro pirrroles e compartilham um plano comum. A cadeia lateral, imidazol da His93, fornece o quinto ligando, estabilizando o grupo heme e deslocando ligeiramente o ião de ferro para fora do plano do heme. A posição do sexto ligando, na desoximioglobina, serve como local de ligação para o O2, bem como para outros ligandos potenciais, tais como o CO ou NO. Quando o O2 se liga, o ião ferro está parcialmente puxado para trás em direção ao plano da porfirina. Embora este deslocamento seja de pouca importância na função da mioglobina monomérica, fornece a base para as mudanças conformacionais que fundamentam as propriedades alostéricas da hemoglobina tetramérica. Além disso, estudos que utilizam a difração de raios-X e técnicas de ligação de xénon identificaram quatro cavidades internas altamente conservadas dentro da molécula de mioglobina que pode servir para concentrar e orientar moléculas para a ligação ao resíduo heme.
Relacionada com o seu papel como um reservatório de O2, a mioglobina funciona também como um tampão de PO2 intracelular (pressão parcial de O2). Semelhante ao papel da creatinafosfoquinase, que funciona para tamponar concentrações de ATP quando atividade muscular aumenta, a mioglobina funciona para tamponar concentrações de O2. Como resultado, a concentração intracelular de O2 mantem-se relativamente constante e homogénea, apesar de aumentos no fluxo de O2 dos capilares para as mitocôndrias, induzidos pela atividade física.

Texto escrito por:
Ana Rita Cardoso
João Faria
Joel Mateus
Pedro Desport
.

terça-feira, 28 de fevereiro de 2017

Insulina

A insulina é uma hormona polipeptídica produzida, armazenada e secretada nas células Beta dos ilhéus de Langerhans, no pâncreas. (Num corte histológico vê-se que ocupam a parte central). É uma hormona anabólica que actua ao nível do fígado, tecido adiposo e com influência no cérebro.
Esta proteína apresenta duas cadeias polipeptídicas, com 21 aminoácidos na cadeia A e 30 na cadeia B, unidas por ligações dissulfeto o que confere uma maior estabilidade e um correcto enrolamento. Começa a ser produzida na forma de pré-pro-insulina que, por acção da peptidase é sinalizada para formar a pro-insulina. Dá-se uma clivagem proteolítica do péptido C formando a insulina bioactiva de duas cadeias, sendo armazenada em grânulos secretores para posterior secreção da insulina (activa).
Tem como função primordial a regulação dos níveis de glicemia no sangue, face a situações de hiperglicemia. Deste modo, a glicose funciona como um sinal bioquímico que desencadeia a sua secreção. Assim, quando são absorvidos alimentos que contêm hidratos de carbono é metabolizada a glucose em ATP e este, por sua vez, desencadeia a secreção de insulina. Interacções proteína-proteína e fosforilações são utilizadas para transmitir o sinal. No tecido adiposo e no músculo, a ligação da insulina a receptores da membrana desencadeia o deslocamento de vesículas ricas em GLUT4 que se fundem com a membrana, aumentando a captação celular, sendo um transporte dependente de insulina.
Por outro lado, no fígado, a insulina ativa a enzima glicoquinase, que é responsável pela conversão de glicose em glicose-6-fosfato; garante uma concentração intracelular de glicose menor do que a concentração extracelular e, por conseguinte, um gradiente de concentração de glicose favorável à sua entrada nessas células, através do transportador GLUT-2, sendo fosforilada pela fosfoquinase antes de ser metabolizada pela glicólise, ciclo de krebs e pela cadeia respiratória para produzir ATP. Desta forma, após a ingestão de alimentos, a glucose é absorvida nos intestinos e é lançada na corrente sanguínea, fazendo com que as concentrações no sangue se elevem, levando a uma hiperglicemia transitória. O pâncreas liberta insulina no sentido de fazer baixar as suas concentrações, permitindo o consumo de glucose pelas células bem como estimular o armazenamento de glucose no fígado, sob forma de glicogénio; o fígado e o músculo metabolizam a glucose em triacilgliceróis, transportados como VLDL para serem armazenados no tecido adiposo, reservas úteis em situações de jejum. A transmissão do sinal cessa, terminada a refeição, por desfosforilação do receptor de insulina pela proteína-tirosina fosfatase.
Em síntese, a Insulina estimula a glicogênese, a síntese de ácidos gordos e a glicólise e inibe vias antagónicas: glicogenólise, a degradação de ácidos gordos e gluconeogénese hepática. Estimula também a síntese proteica. Tem acção sobre enzimas inerentes bem como efeitos na transcrição de genes. Atua, também em receptores específicos no hipotálamo para inibir o acto de comer, regulando assim a alimentação e a conservação de energia.
Os erros inatos do metabolismo das células beta podem produzir uma produção excessiva ou defeciente de insulina por mutações de genes (GCK), alteração do Kir 6.2 ou factores de transcrição da síntese de insulin,respectivamente. O aumento da glucose leva ao aumento da pressão osmótica, glicação de proteínas e a formação de espécies reactivas de oxigénio (EROS).
A Diabetes é a doença metabólica caracterizada pelo aumento de acúcar no sangue: Pode ser do Tipo I - na qual o organismo deixa de produzir insulina pela destruição das células B do pâncreas. É importante averiguar sintomas de polidipsdia, respiração com aroma frutado, níveis de glucose no sangue bem como em casos mais severos de cetonas; realizar exame de random, teste amilase no sangue para função pancreática, entre outros. As terapêuticas essenciais centram-se em insulinoterapia, reposição de líquidos, substituição de eletrólitos e alimentação cuidada. Por sua vez, no Tipo II, as células não produzem insulina suficiente para baixar a concentração de gucose ou existe uma condição de resistência à insulina. Adipócitos, miócitos e hepatócitos não respondem correctamente. Apresenta sintomas semelhantes ao tipo I porém mais graduais. É necessário realizar teste à glicemia em jejum e para níveis anormais prosseguir à investigação para curva glicémica; hemoglobina glicada, controlar consumo de álcool, etc.
Podem levar a complicações como retinopatia diabética; aterosclerose, nefropatia diabética; neuropatia; enfarte do miocárdio/AVC; infecções – leucócitos menos eficazes em hiperglicemia; hipertensão e oxidação de vasos sanguíneos. Ter em atenção a saúde oral (relação da quantidade de açúcar com bactérias). Actualmente existem no mercado vários fármacos que colmatam problemas com a insulina, bem como diferentes tipos de insulina injectável dependendo da causa da doença e do propósito de acção.

Texto escrito por:
Denilson Araújo
Prescília Sampa
Solange da Costa
.

terça-feira, 14 de fevereiro de 2017

Hemoglobina

Para os animais superiores, os mecanismos de difusão simples nos fluídos corporais não são uma forma eficiente de suprir as necessidades de oxigenação dos seus tecidos e material celular. À razão área/volume destes seres vivos, junta-se o facto de o O2 ser uma molécula tendencialmente insolúvel, o que dificulta ainda mais o seu transporte. A solução passa então por proteínas transportadoras, associadas a eritrócitos – mioglobina e sobretudo hemoglobina, sobre a qual versam as linhas que se seguem. A hemoglobina é uma proteína oligomérica e de forma geral é uma metaloproteína constituída por cerca de 600 aminoácidos, organizados em 2 cadeias alfa e 2 cadeias beta emparelhadas entre si, numa estrutura globular quaternária. As quatro cadeias constituem a parte orgânica da molécula, e estão ligadas a grupos prostéticos heme (constituídos por um anel de porfirina e um metal de transição: Fe2+) que têm afinidade para as moléculas de O2 por causa da configuração electrónica. É o Fe2+ que assume esta função, sempre na sua forma ferrosa, sendo que a férrica – Fe3+ - não é capaz de ligar com O2 sendo ao mesmo tempo mais instável e propenso à formação de espécies reativas. Fe2+ possui 1 local de ligação para O2 e esta ligação como seria de esperar, é reversível, para permitir que o oxigénio seja transportado de onde e para onde é necessário. Desta ligação surge uma mudança de cor no sangue humano, de vermelho vivo quando se encontra na sua forma oxigenada, para um tom mais arroxeado na sua fase venosa. Algumas moléculas como CO2 e NO têm uma maior afinidade pelo grupo heme, “expulsando” as moléculas de O2 dos eritrócitos, o que explica a sua toxicidade para o organismo[1]. A porfirias são doenças genéticas relacionadas com a porfirina do grupo heme, temos como exemplos a porfiria aguda intermitente e a acumulação de uroporfirogénio I cada uma com sintomas específicos [2].
No que diz respeito ao transporte coordenado de O2, CO2 e H+, o mecanismo é o seguinte: O2 liga-se cooperativamente à hemoglobina (isto quer dizer que as ligações promovem mais ligações) e depois a afinidade da hemoglobina varia com o pH. Num ambiente ácido o H+ e CO2 provoca a libertação de O2 enquanto que num meio básico,  o O2 provoca a libertação de H+ e CO2. Isto é o efeito de BOHR (efeito recíproco): CO2 + H2O <-> HCO3- + H+
Os eritrócitos mortos libertam o grupo heme gerando: o Fe3+ (que é reciclado) e a bilirrubina (que é excretada no fígado). Esta última pode ter um efeito negativo se libertada no sangue, pois causa icterícia, ou um efeito positivo de antioxidante especialmente como antioxidante da membrana, porque recolhe dois radicais hidroperóxido, possuindo cerca de 1/10 da eficiência da vitamina C.


Texto escrito por:
Beatriz Ribeiro
Cláudia Campos

quinta-feira, 2 de fevereiro de 2017

Glucagon

O Glucagon (ou glicagina) deriva de gluco (glucose) e agon (agonista). Trata-se de um polipeptídeo de cadeia única com 29 aminoácidos, produzido nas células-α das ilhotas de Langerhans, localizadas na porção endócrina do pâncreas. Esta proteína é importante no metabolismo dos hidratos de carbono. A sua função é aumentar a glicemia, agindo como antagonista da insulina. Aquando de uma situação de hipoglicemia, o glucagon é libertado na corrente sanguínea dirigindo-se ao fígado, onde se irá ligar a recetores específicos nos hepatócitos (que armazenam glicogénio), estimulando-os a produzir e posteriormente a libertar glicose. Este mecanismo é chamado de glicogenólise. Após as reservas de glicogénio cessarem, o fígado passa a sintetizar glicose através da gluconeogénese.Assim, em condições normais, a ingestão de glicose inibe a secreção de glucagon. Já em jejum, há diminuição do glicogénio hepático, diminuição da glicólise no fígado, aumento da gluconeogénese, estimulação da oxidação dos ácidos gordos nos adipócitos e aumento dos níveis séricos desta proteína. Uma importante função do glucagon é manter a concentração de glicose alta o suficiente para o funcionamento normal dos neurónios, impedindo convulsões ou coma hipoglicémico em situações normais de jejum, como no sono noturno.
A secreção do glucacon é controlada fisiologicamente pelo organismo não só pela hipoglicema como também aquando de níveis baixos de ácidos gordos, hiperaminoacidemia, estímulo vagal e estímulos do sistema adrenal, tais como o stresse ou exercício físico. O aumento de glucagon no sangue vai ativar a lipase das células adiposas, inibe o armazenamento de triglicerídeos no fígado, inibe a reabsorção de sódio pelos rins, aumenta sensivelmente o débito cardíaco, aumenta a secreção da bile e inibe a secreção de ácido gástrico.
Em caso de patologia, níveis demasiado elevados de glucagon no sangue podem estar relacionados com glucagonoma, uma neoplásia rara das células-α do pâncreas, havendo um aumento dos níveis de glicose e lípidos, diminuição dos níveis de aminoácidos, anemia, diarréia e perda de peso. Observa-se também o aparecimento de eritema migratório necrolítico, caracterizado pela presença de bolhas eritematosas no inferior do abdómen, nádegas, períneo e virilha. A diabetes mellitus frequentemente decorre do desequilíbrio entre as hormonas insulina e glucagon presente nesta neoplasia.
O glucagon pode ser usado em emergências no consultório de Medicina Dentária, tal como no estado de hipoglicemia severa, frequente num diabético não controlado, administrado via intramuscular, provocando o aumento rápido dos níveis de glicose no sangue.

Texto escrito por:
- Catarina Capelo
- Dina Nair
- Marta Santos
- Samyra Matni

quinta-feira, 15 de setembro de 2016

Glicogenina

A Glicogenina é uma proteína cuja principal função consiste em ser a molécula iniciadora da síntese do glicogénio (glicogénese), polímero de reserva de monossacarídeos, mais especificamente de glucose. Os resíduos de glucose são adicionados através de ligações α-1,4. O primeiro passo da síntese do glicogénio é, de facto, a síntese desta proteína. Cada molécula de glicogénio encontra-se ligada à glicogenina por uma ligação glicosídica que envolve o primeiro resíduo de glicose da cadeia e um resíduo de tirosina da glicogenina. A denominação de glicogenina tem origem no facto de esta proteína estar na génese do glicogénio funcionando como iniciador (primer) na formação de uma nova molécula de glicogénio. A glicogenina, através da sua atividade de glucosiltransferase, liga covalentemente a ela própria uma molécula de glucose (a partir de UDP-glucose-forma ativa de glucose). Seguidamente a glicogenina forma um complexo compacto com a glicogénio sintase, enzima responsável pela síntese do glicogénio. Depois ocorre a adição de até mais 7 resíduos de glucose (a partir da UDP-glucose), mediada mais uma vez pela atividade de glucosiltransferase da glicogenina. Finalmente a glicogénio sintase e a enzima ramificadora tomam conta das ocorrências, ficando a glicogenina covalentemente ligada à única extremidade redutora da molécula de glicogénio.
Nos humanos existem duas isoformas da glicogenina que podem ser expressas como Glicogenina-1 com um peso molecular de 37 kDa e codificado pelo gene GYG, que é expresso maioritariamente nos músculos, ou como Glicogenina-2 com um peso molecular de 66 kDae codificado pelo gene GYG2 que é expresso maioritariamente no fígado, músculo cardíaco e outros tipo de tecidos, exceto o músculo esquelético

Deficiência da Glicogenina-1 (GYG1) - Mutação do gene GYG1
Uma deficiência da glicogenina-1 é detetada na sequência do seu gene, GYG1, o que revelou uma mutação non-sense num alelo e uma mutação missense noutro alelo. A mutação missense é resultado da inativação da autoglicosilação da glicogenina-1, o que é necessário para o início da síntese de glicogénio em músculo. A autoglicosilação da glicogenina-1 ocorre no Tyr195 por ação da glucose-1-O-tirosina. Uma mutação missense induzida deste resíduo resulta numa autoglicosilação inativada. No entanto, também foi demonstrado que mutações missense que afetam outros resíduos da glicogenina-1 provocam eliminação da autoglicosilação.
As caraterísticas fenotípicas do músculo esquelético num paciente com este distúrbio são depleção glicogénica muscular, proliferação mitocondrial e predominância marcada de contração lenta e fibras musculares oxidadas. As mutações no gene GYG1 da glicogenina-1 também são causa de cardiomiopatia e arritmia.

Texto escrito por:
Daniela Marinheiro
Carla Marty
Maria Rocha
Marta Rodrigues
Rita Osório

.

terça-feira, 6 de setembro de 2016

Enolase

A enolase é uma enzima, mais concretamente uma metaloenzima ativada. Esta enzima pertence à família das liases, as hidro-liases, que quebram as ligações carbono-oxigénio e está presente em todos os tecidos e organismos que realizam a glicólise ou a fermentação. O pH ótimo é de 6,5 para a atividade desta enzima no ser humano. A sua principal função é a intervenção no 9º passo da glicólise (penúltimo passo desta via metabólica), etapa em que ocorre a desidratação de 2-fosfoglicerato (2-PG) em fosfoenolpiruvato (PEP), produto que irá ser usado, no próximo e último passo, para a produção de energia (ATP). 
A enolase possui 3 isoformas diferentes: a ENO1 ou alfa-enolase (no tecido muscular); ENO2 ou gama-enolase ou enolase neuro específica (nos neurónios); ENO3 ou beta-enolase (nas células do músculo esquelético). A enolase tem um peso molecular de cerca de 100000 Daltons (dependendo da sua isoforma). Num humano, a α-enolase tem duas subunidades antiparalelas, que têm dois domínios diferentes que apresentam interações hidrofóbicas. As subunidades interatuam através de pontes salinas, que envolvem arginina e glutamato. A enolase específica para os neurónios é libertada numa enorme variedade de doenças neurológicas, tais como esclerose múltipla ou AVC, ou em enfartes do miocárdio. Em diversas experiências médicas, têm se empregado concentrações de enolase em amostras na tentativa de diagnosticar certas condições e a sua gravidade. Diversos estudos demonstraram que diferentes níveis de enolase estão relacionados com o crescimento tumoral ou com a ocorrência de enfarte do miocárdio ou um AVC, pelo que foi inferido que os níveis de enolase servem de indicativos na avaliação prognóstica de vítimas de paragem cardíaca. Inibidores da enolase têm sido aproveitados na área da saúde para tratamento e prevenção de várias doenças, destacando-se a fosfonoacetohidroxamato, que tem sido utilizado como
fármaco anti-tripanossoma e mais recentemente, como agente anti-cancerígeno.
A enolase pode ser inibido pelo ião fluoreto (F-). O fluoreto forma um complexo com magnésio e fosfato, que se liga ao centro ativo da enzima em vez do substrato 2-PG, impedindo a conversão de 2-PG a PEP, havendo menor produção de PEP e, consequentemente, ATP. A ingestão de água com flúor, inibe assim a atividade catalítica da enolase das bactérias da cavidade bucal (local altamente anaeróbico e dependente da glicólise), interrompendo a via glicolítica destas (redução do metabolismo de carbohidratos) e, consequentemente, a fermentação bateriana (diminuição de produção de ácidos), prevenindo a formação de cáries dentárias.

Texto escrito por:
Inês Carvalho
Junjie Lin
Maria Alves
Susana Pinto
.

domingo, 21 de agosto de 2016

Citocromo c

Os citocromos foram inicialmente descritos em 1884 por MacMunn como sendo pigmentos respiratórios. Mais tarde, em 1920, Keilin redescobriu estes pigmentos respiratórios e deu-lhes o nome de Citocromos, classificando estas proteínas heme com base na posição do nível mais baixo de absorção de energia do citocromo.O citocromo c é uma proteína pequena com 104 aminoácidos, localizada no espaço intermembranar da mitocôndria de todos os seres vivos que fazem respiração aeróbica. Parte da cadeia é separada por uma protease da matriz quando o polipéptido se insere na membrana interna ficando assim ancorado com a orientação adequada.
Trata-se de uma heteroproteína (proteína composta por aminoácidos e outros elementos químicos), que além de aminoácidos, possui um grupo heme (cofator), que se encontra ligado às cisteínas 14 e 17.
É uma proteína hidrofílica, extremamente solúvel em água (solubilidade ~100g/L).
A percentagem de cada tipo de aminoácido presente na proteína varia de acordo com as espécies e está relacionada com a sua proximidade evolutiva. A variação da sua estrutura primária, nas diferentes espécies, revela indiretamente as suas diferenças genéticas uma vez que o código para a proteína está escrito nos genes. Esta proteína tem um papel importante na respiração celular uma vez que, é a ultima proteína da cadeia transportadora de eletrões. Esta transporta eletrões entre o complexo III e o complexo IV, deslocando-os para uma molécula de oxigénio (aceitador final), convertendo assim o oxigénio molecular em duas moléculas de água. Neste processo, dá-se a translocação de quatro protões, que ajudam à formação de um potencial quimiosmótico que é usado pela ATP sintase para a formação de ATP. É também responsável pelo estimulo para a morte celular programada, ou apoptose, ativando a via intrínseca da apoptose. Este leva à ativação da caspase 9, que por sua vez ativa as caspases 3 e 7, e o destino da célula fica traçado, nomeadamente, morrer por apoptose. Por fim, promove também a libertação de cálcio armazenado no retículo endoplasmático, elevando a concentração do ião no citosol.
Quanto à formação dos citocromos, eles sofrem alterações reversivieis no número de oxidação do ferro de +2 para +3 num processo cíclico. Há três grupos de citocromos principais, denominados pelas letras a, b e c. Eles diferenciam-se pela estrutura do grupo prostético (cadeias laterais), que levam a diferentes espectros de absorção, sendo que o citocromo c absorve os comprimentos de onda mais curtos.

Texto escrito por:
Ana Ribeiro
João Esteves
Maria Correia
Maria Melo
.

quinta-feira, 11 de agosto de 2016

Catalase

A catalase, ou hidroperoxidase, é uma enzima intracelular encontrada na maioria dos organismos. Esta proteína encontra-se nos peroxissomas, nos glicossomas (peroxissomas das plantas) e no citoplasma dos procariontes. A catalase é uma oxirredutase, pois utiliza o peróxido de hidrogénio (H2O2) como aceitador de eletrões e dador eletrónico, decompondo-o segundo esta reação química: 2 H2O2 → 2 H2O + O2 .Embora sejam conhecidas várias formas desta enzima, esta é comummente encontrada sob a forma de um tetrâmero de 240 kDa, possuindo quatro cadeias polipeptídicas na sua estrutura quaternária. Cada cadeia polipeptídica liga-se a um grupo hemo, que possui um ião ferro, que reage com o peróxido de hidrogénio, decompondo a molécula. No entanto, algumas catalases são não-hémicas, ou seja, em vez do grupo hemo está presente um centro binuclear de manganês.
O H2O2 é um produto tóxico do metabolismo das nossas células, produzido, por exemplo, na β-oxidação de ácidos gordos, sendo necessária a rápida converção numa espécie química que seja inócua. A catalase tem o maior número de turnover (kcat) conhecido em enzimas, decompondo até 40000000 moléculas de H2O2 por segundo! A catalase também é importante para certos microorganismos invasores, onde é usada como sistema de defesa contra algumas células do nosso sistema imunitário, que produzem H2O2 como agente antibacteriano. Por último, esta enzima está associada ao mecanismo de envelhecimento retardado ligado ao stress oxidativo.
A reação catalisada por esta enzima é uma reação de dismutação, ou seja, o substrato atua tanto como redutor como oxidante. Sabe-se que ocorre em duas etapas fundamentais: H2O2+Fe(III)-E →H2O+O=Fe(IV)-E e H2O2+O=Fe(IV)-E→H2O+Fe(III)-E+O2. Fe-E representa o ferro do grupo hemo ligado à enzima. A catalase é também capaz de catalisar a oxidação de outras moléculas como o formaldeído, o ácido fórmico e alguns álcoois. H2O2+ H2R→2H2O+R, em que R é a forma oxidada da molécula que sofre a reação. Iões metálicos (em especial cobre(II) e ferro(II)) são inibidores não competitivos e o cianeto e curare competitivos.
A catalase é utilizada não só na indústria têxtil, para remover H2O2 de tecidos, como também em alguns produtos de limpeza de lentes de contacto, atuando como um agente antibacteriano. Atualmente, tem ainda sido usada em máscaras de beleza, combinando a enzima com H2O2 para aumentar a oxigenação celular das camadas superiores da epiderme.
O chamado Teste da Catalase é usado em microbiologia e consiste na deteção da catalase em bactérias, servindo essencialmente para a distinção entre estafilococos e estreptococos. Neste teste põe-se em contacto o peróxido com uma cultura líquida do microorganismo a testar, se aparecem bolhas (oxigénio), o organismo é catalase-positivo (possui catalase, caso dos estafilococos), caso contrário, designa-se catalase-negativo (estreptococos).

Texto escrito por:
Ana Araújo
Inês Oliveira
Mariana Pires
José Cardoso
.

sexta-feira, 29 de julho de 2016

Aminoácidos como neurotransmissores



Além de serem utilizados como blocos de construção para a síntese de proteínas, os aminoácidos desempenham muitas outras funções fisiológicas importantes. Uma delas é, sem dúvida, o facto de existirem vários aminoácidos que desempenham funções de neurotransmissores:
- Glutamato, é o principal neurotransmissores excitatórios do sistema nervoso central. Desempenha funções centrais ao nível da transmissão nervosa rápida (isto é, resposta rápida a um estímulo), cognição, memória, movimento e sensação. É reconhecido por duas classes de recetores: os recetores ionotrópicos, que são recetores que quando ativados permitem o fluxo de iões através da membrana; e os recetores metabotrópicos, que quando ativados estimulam a produção de mensageiros secundários.

- Aspartato, é também um neurotransmissor excitatório do sistema nervoso central. Devido às semelhanças bioquímicas entre o glutamato e o aspartato (mais informações sobre esse assunto aqui), o mecanismo de atuação e os efeitos são idênticos entre ambos (apesar de o glutamato ser, do ponto de vista quantitativo, mais importante do que o aspartato).


- Glicina, é o aminoácido mais simples, sendo que apresenta funções inibitórias ao nível do sistema nervoso central, com especial destaque na medula espinhal, no tronco cerebral e na retina. Além do seu papel como neurotransmissor, desempenha também funções de imunomodulador, anti-inflamatório e citoprotetor (protetor celular). A ativação dos seus recetores permite um influxo de iões cloreto.

terça-feira, 26 de julho de 2016

Albumina

A albumina é uma proteína globular formada exclusivamente por aminoácidos. É solúvel em água, moderadamente solúvel em soluções salinas concentradas e sofre desnaturação quando é exposta ao calor excessivo. É a proteína mais abundante no plasma sanguíneo humano. A sua síntese ocorre no fígado (hepatócitos) e a velocidade desta depende da quantidade de proteínas ingeridas (regulação por feedback negativo). Tem um peso molecular de cerca de 66KDa e uma semi-vida entre 15 e 19 dias. A concentração normal de albumina no sangue varia entre 3.5 e 5.0 g/dL. O catabolismo desta proteína dá-se, preferencialmente, em órgãos com elevadas taxas de metabolismo (fígado, baço e rim). Existem alguns tipos de albuminas, cujo nome varia conforme o local onde são mais prevalentes: seroalbumina (presente no plasma sanguíneo), ovoalbumina (principal proteína da clara do ovo) e lactoalbumina (presente no leite, é composta por aminoácidos essenciais tendo, por isso, um valor nutricional elevado). É utilizada em tratamentos de queimaduras, hemorragias e recuperação de cirurgias, uma vez que é útil para diminuir edemas. É ainda fundamental para a manutenção da pressão osmótica do sangue (contribui com 75 a 80% do efeito osmótico do plasma). A albumina tem a função de transporte e armazenamento de vários compostos, normalmente pouco solúveis em água e de baixo peso molecular, ligando-se a estes. Por exemplo, o transporte da bilirrubina não-conjugada para o fígado e de ácidos gordos de cadeia longa para os tecidos extra-hepáticos. Transporta ainda as hormonas da tiroide, as hormonas lipossolúveis e os iões de cálcio. Esta proteína é ainda responsável pelo controle do pH sanguíneo e da viscosidade do sangue. Tem também um papel importante no metabolismo dos lípidos. Deficiências na concentração desta hormona podem desencadear patologias, tais como a Hiperalbuminemia (excesso de albumina no sangue) e a Hipoalbuminemia (défice de albumina no sangue). No primeiro caso, os sintomas são mais acentuados em casos de desidratação grave, sendo uma condição rara e de diagnóstico pouco significativo na maioria dos casos. A Hipoalbuminemia resulta da redução da síntese proteica, que pode ser provocada por patologias hepáticas (que provoquem a diminuição da produção da proteína), desnutrição, má absorção (devido, por exemplo, a patologias intestinais), infeções, excreção em excesso da mesma e, em casos mais raros, por doenças genéticas. Se a concentração desta proteína diminuir, a pressão osmótica do sangue também diminui. Como consequência, o plasma sanguíneo tende a infiltrar-se nos espaços intercelulares, provocando edemas, daí que a administração de albumina após uma intervenção cirúrgica seja responsável pela diminuição do inchaço.

Texto escrito por:
Mariana Rebelo
Marta Duarte
Rafael Honório
Sara Silva
.

domingo, 24 de julho de 2016

Ponto isoelétrico (aminoácidos e proteínas)

Os aminoácidos são, conforme já referido noutros posts, moléculas que apresentam um grupo amina e um grupo carboxílico. Estes dois grupos são ionizáveis, ou seja, podem sofrer protonação/desprotonação. Além disso, nas cadeias laterais de vários aminoácidos é possível encontrar outros grupos ionizáveis adicionais. Isto significa que os aminoácidos são moléculas que podem apresentar carga total positiva, negativa ou neutra. O que vai influenciar qual a carga do aminoácido, num determinado contexto, são dois fatores:
1. Composição química do aminoácido e da molécula onde ele está inserido (se for esse o caso…). A presença de determinados átomos/grupos funcionais numa molécula altera a distribuição da sua nuvem eletrónica, tornando algumas ligações covalentes mais fortes e outras mais fracas. Quanto mais fracas forem as ligações que envolvam átomos de hidrogénio, mais fácil será a ocorrência de desprotonação.
2. pH da solução onde o aminoácido está inserido. Como é lógico, um grupo funcional vai apresentar um estado de protonação que é influenciado pelo pH do meio, ou seja, se o pH for inferior ao seu pKa, o grupo funcional tende a estar protonado, e se for superior ao pKa, tende a estar desprotonado.
Portanto, com base nas características de cada aminoácido, e do meio onde se encontra, é possível obter diferentes cargas totais.
O ponto isoelétrico é definido como o valor de pH para o qual a carga total do aminoácido é nula. Atenção que isto não significa que não existem cargas no aminoácido, pois na realidade existem. Significa é que quando sujeito a esse valor de pH, o total de cargas positivas iguala o total de cargas negativas. Neste ponto, a solubilidade do aminoácido diminui. Quando um aminoácido é colocado numa solução com um pH inferior ao seu ponto isoelétrico, adquire carga positiva, pois os grupos funcionais tendem a estar protonados (captam H+). Se o pH for superior ao ponto isoelétrico, a carga total é negativa, pois os grupos funcionais tendem a estar predominantemente desprotonados (perdem H+).
No caso das proteínas, aplica-se exatamente o mesmo conceito. No entanto, neste caso deve-se considerar o total de grupos ionizáveis presentes na molécula, sendo que o ponto isoelétrico é definido como o valor de pH para o qual a carga total da proteína é zero. 
Novamente, neste valor a solubilidade da proteína é nula, e esta tende a precipitar. Esta situação é explorada do ponto de vista laboratorial através da técnica focagem isoelétrica.
.

quinta-feira, 21 de julho de 2016

Vasopressina

A vasopressina (væsoʊˈprɛsən / vaso- + pressure + -in), também conhecida como hormona antidiurética (ADH em inglês), tem um peso molecular de 1228 kDa e é formada pela seguinte sequência de nove aminoácidos: Cisteína – Tirosina – Fenilalanina – Glutamato – Aspartato – Cisteína – Prolina – Arginina – Glicina. O facto de ter uma ponte dissulfureto entre as cisteínas, na posição 1 e 6, confere-lhe uma estrutura em forma de anel. Na maioria das espécies, a posição 8 da molécula é ocupada pela arginina, pelo que também é chamada de arginina vasopressina ou argipressina (AVP). A lisina vasopressina possui uma lisina na posição da arginina. Em 1955, Du Vigneaud venceu o Prémio Nobel da Química, em parte, pela descoberta da vasopressina e da oxitocina, hormona relacionada com a vasopressina. A vasopressina, nos rins, aumenta a permeabilidade das células dos túbulos renais à água. Como resultado, permite que o organismo conserve água, aumentando a concentração da urina e diminuindo seu volume. Por essa razão recebe o nome de hormona antidiurética (ADH). Promove também vasoconstrição arteriolar, aumentando a resistência periférica e consequentemente a pressão arterial. Por esse motivo recebe também o nome de vasopressina. Tem também outras funções como: regulação do ritmo circadiano, homeostasia e diversos comportamentos sociais.Esta hormona é produzida pela neuroipófise, mas também pode ser produzida pelo hipotálamo ao nível do núcleo supraóptico e paraventricular. A produção da vasopressina começa com a ativação do gene responsável pela sua biossíntese. Este gene localiza-se no cromossoma 20 e possui 3 exões, separados por 2 intrões. Cada exão dá origem a 1 dos 3 domínios da molécula precursora da vasopressina.
Sob a ação enzimática, este precursor perde o peptídeo sinalizador e vai posteriormente ser armazenado em vesículas no Complexo de Golgi, para depois ser transportado do corpo celular do neurónio para as terminações nervosas. Este transporte demora cerca de 12 a 24 horas. Durante este tempo ocorrem diversas clivagens, dando origem a moléculas de ADH, neurofisina e copeptina. A ADH é excretada pela neuroipófise, resumidamente, em resposta a diminuições do volume plasmático (detetadas por barorrecetores), aumentos do potencial osmótico do plasma (detetados por osmorecetores em veias, artérias, entre outros vasos) e ainda em resposta a colecistocinina (excretada pelo intestino delgado).
As doenças relacionadas com a vasopressina dão-se normalmente por deficiência ou excesso na sua produção ou no seu efeito. Na deficiência pode ocorrer poliúria, excesso de urina excretada, que quando é hipotónica e aliada a hipernatremia (excesso de sódio na corrente sanguínea) são sinais de Diabetes insipidus. O termo Diabetes refere à perda de água, em que insipidus é a ausência de sabor na urina e mellitus, oriundo de mel, é o sabor adocicado da mesma. A Diabetes insipidus surge da falta de produção da hormona ADH. O excesso é caracterizado pela retenção de líquidos e pode levar a hiponatremia. Acontece muitas vezes nas quedas de pressão arterial, redução da volemia (quantidade de sangue circulante) ou desidratação. O excesso também ocorre pelo Síndrome da secreção inadequada de vasopressina (SIHAD), causado por desordens no Sistema Nervoso Central, neoplasias, doenças pulmonares, HIV e medicações e não por quedas de pressão e algum dos outros fatores.


Texto escrito por:
Luís Alves
Pedro Silva
Ricardo Praia
Tiago Fernandes
Tiago Borges